
Lecture #8
Multi-Tasking Design
Methodology
Instructor:
Dr. Ahmad El-Banna

Communication and Information Engineering

S
p
r

i
n

g
 2

0
1
7

CIE 314
Embedded Systems Fundamentals

©
 A

hm
ad

 E
l-B

an
na

1

Agenda

Multi-Tasking Design Methodology

• Polling-Interrupts -RTOS

Software Design Issues

• Task Interactions - Resource Sharing

Design Tips

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

2

Multi-Tasking Design Methodology

• Almost all real time embedded systems are real time
reactive which must react external events or internal
timer events within an expected time limit.

• After the system time requirement analysis and system
modeling we can start the software design which will
provide a guideline for software coding.

• One of the classical modeling patterns for real time
embedded system is a simple explicit loop controlled
state Chart for soft real-time operating systems.

3

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Simple Loop Architecture

ISR1
Task1

Taskn

Init

ISRn

4

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Contd.

• The shortcoming is when the task ki is waiting for an
unavailable resource the task ki+1 can not precede and
it will let some other tasks fail to meet the response
deadline requirement.

• There is no priority preference among the tasks.

• The advantage is its simplicity and no RTOS support is
needed.

• There are many different ways to schedule and design
a multi-tasking real time system due to the system
complexities and time constraint requirements.

• You can write a task scheduler on your own using
polling external events or using external and internal
timer interrupts, or use a commercial RTOS.

5

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Polling

• The simplest looping approach is to have all functional blocks
including the event polling functions in a simple infinite loop like a
Round-Robin loop.

 main()

{

 while(1)

 {

 function1();

 function2();

 function3();

 }

}

• Here the function1 and function2 may check the external data every
50ms.

• The function3 may store the collected data and make some decisions and
take actions based on the collected data.

6

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Contd.

• The question is how to control the timing?
• Without a timer control interrupt due to various reasons such as not

enough ports and interrupts available, you can design a time_delay
function.

void time_delay(unsigned int delay)
{ unsigned int i,j;
 for(i=0; i<=delay; i++)
 {
 for (j=0; j<=100; j++);
 }
}
• A function call of time_dealy(1) will produce approximate 1 ms for 12

MHz of 8051.
• You can estimate it in this way: The 8051 runs at 1MIPS, the inner loop

has 10 assembly machine instructions (by View -> Disassemble
window in µvision) and 100 iterations takes about 100x10 µs = 1 ms.

7

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Contd.
• Assume that all function execution time are very short and can be ignored.

• You can insert a time_deay(50) at the end of each cycle to make program poll the
I/O ports every 50 ms.

 main()

{

 while(1)

 {

 function1();

 function2();

 function3();

 time_delay(50);

 }

}

• Here we ignore the execution time of all functions.

• If the total execution time of these three functions is 10ms then we can adjust the
time delay to 40 ms.

• Of course, in reality you don’t see this implementation very often because the time
control is not accurate and it is not appropriate for any hard real time systems.

• For very simple application with limited timers and interrupt ports, you can still use
this design style

8

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Interrupts

• A popular design pattern for a simple real time system is a division of
a background program and several foreground interrupt service
functions.

• For example, an application has a time critical job which needs to run
every 10ms and several other soft time constrained functions such as
interface updating, data transferring, and data notification.

• Foreground:
 void critical_control interrupt INTERRUPT_TIMER_1_OVERFLOW
{
// This ISR is called every 10 ms by timer1

}
• Background:
main()
{ while(1) {
 function1();
 function2();
 function3(); } }

9

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Contd.

•This simple background loop with foreground interrupt
service routine pattern works fine as long as the ISR
itself is short and runs quick.

•However, this pattern is difficult to scale to a large
complex system. E.g., the critical time control ISR
function itself needs to wait for some data to be
available, or to look up a large table, or to perform
complex data transformation and computation.

• In this situation, the ISR itself may take more than
10ms and will miss the time deadline and also breach
the time requirements for other tasks.

10

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Flag Control
• An alternative solution is to have a flag control variable to mark the interrupt

time status and to split the ISR into several sub states as follows.

11

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Contd.

• A rule of thumb for the timer interval is always to make
the interval shorter enough to ensure the critical
functions get serviced at desired frequency.

• For a large and complex real time system with more
than dozen concurrent tasks, you need to use RTOS to
make priority-based schedule for multi-tasking jobs.

12

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

RTOS

• RTOS makes complex hard real time embedded software design
much easier.

• The links between tasks can represent the synchronization signals,
exchange data, or even a timeout notification between tasks.

13

A simple state Chart diagram

Taski Taskj

RTOS

Init

Taskk

Parallel Architecture

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Contd.

• RTOS is a background program which controls and
schedules executions and communications of multiple
time constrained tasks, schedules resource sharing,
and distributes the concerns among tasks.

• There are a variety of commercial RTOS available for
various microcontrollers such as POSIX(Portable
Operating System Interface for Computing
Environments) and CMX-RTX.

• RTOS is widely used in complex hard real time
embedded software.

• Here is a simple pseudo example of RTX51 for 8051
microcontroller for you to get first touch to the RTOS. 14

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

Implementation

15

Embedded Sys. Fundamentals Spring 17 © Ahmad El-Banna

Assignment

For the shown typical Traffic Light Control System,
1. Sketch a FSM for that system
2. Assume execution times and deadlines for the tasks

that you indicated and sketch a time frame using RMS
scheduling.

(Write any assumption that you used)

16

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

DESIGN TIPS

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

17

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

18

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

19

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

20

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

21

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

22

• For more details, refer to:

• Chapter 2 at Embedded Software Development with C,
Springer 2009 by Kai Qian et al.

• Chapter 9 at Introduction to Embedded Systems, Springer 2014
by Manuel Jiménez et al.

• The lecture is available online at:

• http://bu.edu.eg/staff/ahmad.elbanna-courses

• For inquires, send to:

• ahmad.elbanna@feng.bu.edu.eg

E
m

be
d
d
ed

 S
ys

.
Fu

nd
am

en
ta

ls
 S

p
ri
ng

 1
7

 ©
 A

hm
ad

 E
l-B

an
na

23

http://bu.edu.eg/staff/ahmad.elbanna-courses/
http://bu.edu.eg/staff/ahmad.elbanna-courses/
http://bu.edu.eg/staff/ahmad.elbanna-courses/
http://bu.edu.eg/staff/ahmad.elbanna-courses/
https://speakerdeck.com/ahmad_elbanna
mailto:ahmad.elbanna@fes.bu.edu.eg

